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DeepFlame, Release 0.1

DeepFlame is a deep learning empowered computational fluid dynamics package for single or multiphase, laminar or
turbulent, reacting flows at all speeds. It aims to provide an open-source platform to combine the individual strengths
of OpenFOAM, Cantera and PyTorch libraries for deep learning assisted reacting flow simulations. It is also has the
scope to incorporate next-generation heterogenous supercomputing and AI acceleration infrustructures such as GPU
and FPGA.

The deep learning algorithms and models used in the DeepFlame tutorial examples are developed and trained indepen-
dently by our collaborators team – DeepCombustion. Please refer to their website for detailed information.

Note: This project is under active development.
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CHAPTER

ONE

INSTALLATION

1.1 Prerequisites

The installation of DeepFlame is simple and requires OpenFOAM-7, LibCantera, and PyTorch.

Note: If Ubuntu is used as the subsystem, please use Ubuntu:20.04 instead of the latest version. OpenFOAM-7
accompanied by ParaView 5.6.0 is not available for Ubuntu-latest.

First install OpenFOAM-7 if it is not already installed.

sudo sh -c "wget -O - https://dl.openfoam.org/gpg.key | apt-key add -"
sudo add-apt-repository http://dl.openfoam.org/ubuntu
sudo apt-get update
sudo apt-get -y install openfoam7

OpenFOAM-7 and ParaView-5.6.0 will be installed in the /opt directory.

Note: There is a commonly seen issue when installing OpenFOAM via apt-get install with an error mes-
sage: could not find a distribution template for Ubuntu/focal. To resolve this issue, you can refer to
issue#54.

LibCantera and PyTorch can be easily installed via conda. If you have compatible platform, run the following com-
mand to install DeepFlame.

conda create -n deepflame python=3.8
conda activate deepflame
conda install -c cantera libcantera-devel
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
conda install pybind11
conda install -c conda-forge easydict

Note: Please go to PyTorch’s official website to check your system compatability and choose the installation command
line that is suitable for your platform.

Note: Check your Miniconda3/envs/deepflame directory and make sure the install was successful (lib/ include/
etc. exist).
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1.2 Configure

1. Source your OpenFOAM-7 bashrc to configure the $FOAM environment.

Note: This depends on your own path for OpenFOAM-7 bashrc.

If you have installed using apt-get install, use:

source /opt/openfoam7/etc/bashrc

If you compiled from source following the official guild, use:

source $HOME/OpenFOAM/OpenFOAM-7/etc/bashrc

Note: Check your environment using echo $FOAM_ETC and you should get the directory path for your OpenFOAM-7
bashrc you just used in the above step.

2. Clone the DeepFlame repository:

git clone https://github.com/deepmodeling/deepflame-dev.git

3. Configure the DeepFlame environment:

cd deepflame-dev
. configure.sh --use_pytorch
source ./bashrc

Note: Check your environment using echo $DF_ROOT and you should get the path for the deepflame-dev directory.

1.3 Build and Install

Finally you can build and install DeepFlame:

. install.sh

Note: You may come accross an error regarding shared library libmkl_rt.so.2when libcantera is installed through
cantera channel. If so, go to your conda environment and check the existance of libmkl_rt.so.2 and libmkl_rt.
so.1, and then link libmkl_rt.so.2 to libmkl_rt.so.1.

cd ~/miniconda3/envs/df-pytorch/lib
ln -s libmkl_rt.so.1 libmkl_rt.so.2

If you have compiled DeepFlame successfully, you should see the print message in your terminal:

4 Chapter 1. Installation
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1.4 Other Options

DeepFlame also provides users with LibTorch and CVODE (no DNN version) options.

1. If you choose to use LibTorch (C++ API for Torch), first create the conda env and install LibCantera:

conda create -n df-libtorch
conda activate df-libtorch
conda install -c cantera libcantera-devel

Then you can pass your own libtorch path to DeepFlame.

cd deepflame-dev
. configure.sh --libtorch_dir /path/to/libtorch/
source ./bashrc
. install.sh

Note: Some compiling issues may happen due to system compatability. Instead of using conda installed Cantera C++
lib and the downloaded Torch C++ lib, try to compile your own Cantera and Torch C++ libraries.

2. If you just need DeepFlame’s CVODE solver without DNN model, just install LibCantera via conda.

conda create -n df-notorch
conda activate df-notorch
conda install -c cantera libcantera-devel

If the conda env df-notorch is activated, install DeepFlame by running:

cd deepflame-dev
. configure.sh
source ./bashrc
. install.sh

If df-notorch not activated (or you have a self-complied libcantera), specify the path to your libcantera:

. configure.sh --libcantera_dir /your/path/to/libcantera/
source ./bashrc
. install.sh

1.4. Other Options 5
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CHAPTER

TWO

TWO EXAMPLES

2.1 DeepFlame with DNN

If you choose to use PyTorch as the integratgor and use the compilation flag –use_pytorch, you can run examples
stored in $HOME/deepflame-dev/examples/. . . /pytorchIntegratgor. To run an example, you first need to source your
OpenFOAM:

source $HOME/OpenFOAM/OpenFOAM-7/etc/bashrc

Then, source your DeepFlame:

source $HOME/deepflame-dev/bashrc

Next, you can go to the directory of any example case that you want to run. For example:

cd $HOME/deepflame-dev/examples/zeroD_cubicReactor/H2/pytorchIntegratgor

This is an example for the zero-dimensional hydrogen combustion with PyTorch as the integrator. All files needed
by DNN are stored in pytorchDNN folder, and the inference file is inference.py. Configurations regarding DNN are
included in constant/CanteraTorchProperties.

The case is run by simply typing:

./Allrun

Note: Users can go to constant/CanteraTorchProperties and check if torch is switched on. Switch it on to run DNN
cases, and switch off to run CVODE cases.

If you plot PyTorch’s result together with CVODE’s result, the graph is expected to look like:

2.2 DeepFlame without DNN

CVODE Integrator is the one without the application of Deep Neural Network (DNN). Follow the steps below to run
an example of CVODE. Examples are stored in the directory: .. code-block:: bash

$HOME/deepflame-dev/examples

To run these examples, first source your OpenFOAM, depending on your OpenFOAM path:

7
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Fig. 1: Visualisation of 0D results from PyTorch and CVODE integrators

source $HOME/OpenFOAM/OpenFOAM-7/etc/bashrc

Then, source your DeepFlame:

source $HOME/deepflame-dev/bashrc

Next, you can go to the directory of any example case that you want to run. For example:

cd $HOME/deepflame-dev/examples/zeroD_cubicReactor/H2/cvodeIntegrator

This is an example for the zero-dimensional hydrogen combustion with CVODE integrator.

The case is run by simply typing:

./Allrun

The probe used for post processing is defined in /system/probes. In this case, the probe is located at the coordinates
(0.0025 0.0025 0.0025) to measure temperature variation with time. If the case is successfully run, the result can be
found in /postProcessing/probes/0/T, and it can be visualized by running:

gunplot
plot "/your/path/to/postProcessing/probes/0/T"

You will get a graph:

8 Chapter 2. Two Examples
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Fig. 2: Visualisation of the zero-dimensional hydrogen combustion result with CVODE integrator

2.2. DeepFlame without DNN 9
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CHAPTER

THREE

BRIEF INTRODUCTION TO INPUTS

The dictionary CanteraTorchProperties is the original dictionay of DeepFlame. It read in network related param-
eters and configurations. It typically looks like:

chemistry on;
CanteraMechanismFile "ES80_H2-7-16.yaml";
transportModel "Mix";
odeCoeffs
{

"relTol" 1e-15;
"absTol" 1e-24;

}
inertSpecie "N2";
zeroDReactor
{

constantProperty "pressure";
}

splittingStretagy false;

TorchSettings
{

torch on;
GPU off;
log on;
torchModel1 "ESH2-sub1.pt";
torchModel2 "ESH2-sub2.pt";
torchModel3 "ESH2-sub3.pt";
coresPerNode 4;

}
loadbalancing
{

active false;
//log true;

}

In the above example, the meanings of the parameters are:

• CanteraMechanismFile: the name of the reaction mechanism file.

• transportModel: the default model is Mix, but other models including UnityLewis and Multi are also availabile.

• constantProperty: property set to be constant during reaction. It can be set to pressure or volume.

11
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• odeCoeffs: the ode torlerance. 1e-15 and 1e-24 are used for network training, so it should keep the same when
comparing results with and without DNN. Default values are 1e-6 and 1e-10.

• TorchSettings: all paramenters regarding the usage of DNN. This section will not be read in CVODE cases.

• torch: the switch used to control the on and off of DNN. If users are running CVODE, this needs to be switched
off.

• GPU: the switch used to control whether GPU or CPU is used to carry out inference.

• torchModel: name of network.

• coresPerNode: If you are using one node on a cluster or using your own PC, set this parameter to the actual
number of cores used to run the task. If you are using more than one node on a cluster, set this parameter the
total number of cores on one node. The number of GPUs used is auto-detected.

12 Chapter 3. Brief Introduction to Inputs



CHAPTER

FOUR

DF0DFOAM

4.1 Zero-Dimensional ignition reactor

Problem Description

This case simulates the zero-dimensional autoignition under constant-pressure or constant-volume condition. This case
confirm the validity of the implementation of chemical reaction source terms in DeepFlame.

Table 1: Operating Conditions in Brief
Mixture Hydrogen-Air
Equivalence Ratio 1.0
Initial Gas Temperature 1400 K
Initial Gas Pressure 1 atm

Output

Fig. 1: Results of zero-dimensional constant-pressure autoignition

13
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CHAPTER

FIVE

DFLOWMACHFOAM

5.1 One-Dimensional Planar Flame

Problem Description

The case simulates the steady-state 1D freely-propagating flame. The results are able to catch the flame thickness,
laminar fame speed and the detailed 1D flame structure. This case demonstrate that the convection-diffusion-reaction
algorithms implemented in our solver are stable and accurate.

Table 1: Operating Conditions in Brief
Computational Domain length 0.06 m
Mixture Hydrogen-Air
Equivalence Ratio 1.0
Inlet Gas Temperature 300 K

Output

5.2 Two-Dimensional Jet Flame

Problem Description

This case simulates the evolution of a 2D non-premixed planar jet flame to validate the capability of our solver for
multi-dimensional applications.

Table 2: Operating Conditions in Brief
Computational Domain size (x) 0.03 m * 0.05 m
Jet Composition H2/N2= 1/3 (fuel jet), Air (co-flow)
Initial Velocity 5 m/s (fuel jet), 1 m/s (co-flow)
Initial Gas Temperature 1400 K (ignition region), 300 K (other area)

Output

The initial condition and the evolution of the jet flame are presented in this figure.

15
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Fig. 1: Numerical setup of one-dimensional premixed flame and the detailed flame structure obtained by our solver

16 Chapter 5. dfLowMachFoam
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Fig. 2: Simulation results of the two-dimensional jet flame.

5.2. Two-Dimensional Jet Flame 17
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5.3 Three-Dimensional reactive Taylor-Green Vortex

3D reactive Taylor-Green Vortex (TGV) which is a newly established benchmark case for reacting flow DNS codes is
simulated here to evaluate the computational performance of our solver.

The initial fields are set according to a benchmark case established by Abdelsamie et al. The figure below shows
contours of vorticity magnitude and temperature as well as the x-direction profiles of species at initial time.

Fig. 3: Initial contours and profiles of vorticity magnitude, temperature, and species mass fraction for the reactive TGV

Output

The developed TGV are displayed in the figures below.

Reference

A.Abdelsamie, G.Lartigue, C.E.Frouzakis, D.Thevenin, The taylor-green vortex as a benchmark for high-fidelity com-
bustion simulations using low-mach solvers, Computers & Fluids 223 (2021): 104935.
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Fig. 4: Contours and profiles of temperature and species mass fraction at t = 0.5 ms

5.3. Three-Dimensional reactive Taylor-Green Vortex 19
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CHAPTER

SIX

DFHIGHSPEEDFOAM

6.1 One-Dimensional Reactive Shock Tube

Problem Description

The case simulates supersonic inlet flow hitting the wall and then reflected to ignite the premixed gas. The reactive wave
will catch the reflected shock wave. This case can also verify the accuracy of our solver in capturing the interaction of
convection and reaction.

Table 1: Operating Conditions in Brief
Chamber size (x) 0.12 m
Initial Gas Density 0.072 kg/m^3 (x<=0.06 m), 0.18075 kg/m^3 (x>0.06 m)
Initial Gas Pressure 7173 Pa (x<=0.06 m), 35594 Pa (x>0.06 m)
Initial Gas Velocity 0 m/s (x<=0.06 m), -487.34 m/s (x>0.06 m)
Ideal Gas Composition (mole fraction) H2/O2/Ar = 2/1/7

Output

Reference

E S Oran, T R Young, J P Boris, A Cohen, Weak and strong ignition. i. Numerical simulations of shock tube experi-
ments, Combustion and Flame 48 (1982) 135-148.

R J Kee, J F Grcar, M D Smooke, J A Miller, E Meeks, Premix: A fortran program for modeling steady laminar
one-dimensional premixed flames, Sandia National Laboratories.

6.2 One-Dimensional H2/Air Detonation

Problem Description

Detonation propagation contains a complex interaction of the leading shock wave and auto-igniting reaction, showing
the coupling of shock wave and chemical reaction. This case aims to validate the accuracy of this solver in capturing
this process and the propagation speed.

Table 2: Operating Conditions in Brief
Chamber size (x) 0.5 m
Initial Gas Pressure 90 atm (hot spot), 1 atm (other area)
Initial Gas Temperature 2000 K (hot spot), 300 K (other area)
Ideal Gas Composition (mole fraction) H2/O2/N2 = 2/1/3.76 (homogeneous stoichiometric

mixture)

21
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Fig. 1: Result of one-dimensional reactive shock tube

Output

Reference

J Li, Z Zhao, A Kazakov, F L Dryer, An updated comprehensive kinetic model of hydrogen combustion, International
Journal of Chemical Kinetics 36 (2004) 566-575.

6.3 Two-Dimensional H2/Air Detonation

Problem Description

Detonation propagation contains a complex interaction of the leading shock wave and auto-igniting reaction, and two-
dimensional detonation can further reveal the interaction of shear waves and shock waves.

Table 3: Operating Conditions in Brief
Chamber size (x) 0.2 m * 0.01 m
Initial Gas Pressure 100 atm (three hot spot), 1 atm (other area)
Initial Gas Temperature 2000 K (three hot spot), 300 K (other area)
Ideal Gas Composition (mole fraction) H2/O2/N2 = 2/1/7 (homogeneous stoichiometric mix-

ture)

Output

Triple points can be seen clearly in the picture below.

In the picture below, during the propagation of detonation wave, we can see that the size of cells gradually became
stable.

Reference

22 Chapter 6. dfHighSpeedFoam
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Fig. 2: Result of one-dimensional H2/air detonation

Fig. 3: Density field of two-dimensional H2 detonation

6.3. Two-Dimensional H2/Air Detonation 23



DeepFlame, Release 0.1

Fig. 4: History of maximum pressure during detonation propagation

C J Jachimowski, An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Com-
bustion, NASA TP-2791, Feb. 1988.

24 Chapter 6. dfHighSpeedFoam
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SEVEN

DFSPRAYFOAM

7.1 aachenBomb

Problem Description

This case simulates combustion inside a constant volume chamber based on an experimental setup at RWTH Aachen
University. It can mimic, for example, the beginning of power stroke in a four-stroke diesel engine.

Table 1: Operating Conditions in Brief
Chamber size (xyz) 0.02×0.1×0.02m^3
Initial Gas Temperature 800K
Initial Gas Pressure 5MPa
Initial Gas Composition (mass fraction) 23.4% O2, 76.6% N2
Fuel n-heptane
Fuel Temperature at the Nozzle 320K
Fuel Injection Duration 1.25ms
Total Injection Mass 6mg

Configurations Different from OpenFOAM Case

Cantera is used instead of the built-in modules of OpenFOAM to solve the chemical reactions. Therefore, a chemi-
cal mechanism file in YAML format is required in the case directory, and the full name of the mechanism file (“xxx.
yaml”) should be the entry after the keyword CanteraMechanismFile in constant/CanteraTorchProperties. Non-
reacting simulation can be conducted by switching the entry after the keyword chemistry from on to off in con-
stant/CanteraTorchProperties.

Results

25
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CHAPTER

EIGHT

REACTION MECHANISM CONVERTION

DeepFlame uses yaml reaction mechanisms, which are compatible with Cantera. The following command lines can be
used to convert chemkin mechanisms into yaml format.

conda create --name ct-env --channel conda-forge cantera
conda activate ct-env
ck2yaml --input=chem.inp --thermo=therm.dat --transport=tran.dat

Note: Users will need to create a new conda environment other than the one used for DeepFlame’s dependencies, and
the channel needs to be conda-forge. Otherwise, there might be an error regarding shared library, libmkl_rt.so.2.

More detailed instruction of converting mechanisms can be found on Cantera official website.

27
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CHAPTER

NINE

FLAME SPEED

flameSpeed.C is another utility in DeepFlame. The flame is located at the maximum temperature gradient at a certain
time, and its speed is equal to the maximum gradient porpagation speed subtracting the inlet speed. To use this utility,
simply run the commands below after the simulation.

runApplication reconstructPar
flameSpeed

A log containing flame thickness, flame location, flame proagation speed, and flame speed at each time step will be
presented.

Note: This utility only applies to one-dimensional cases. Similar logs can also exit when it is run for two or three
dimensional cases, but results are not physical.

29
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TEN

DEVELOPERS TEAM

The current DeepFlame developers come from the following research groups/affiliations:

• Peking University (Lead PI: Zhi X. Chen)

• AI for Science Institute (AISI), Beijing

31
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ELEVEN

COLLABORATORS TEAM

• Shanghai Jiao Tong University (Lead PI: Zhi-Qin John Xu)

• Southern University of Science and Technology (Lead PI: Tianhan Zhang)
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TWELVE

HOW TO CITE

If you use DeepFlame for a publication, please use the citation:

Runze Mao, Minqi Lin, Yan Zhang, Tianhan Zhang, Zhi-Qin John Xu, Zhi X. Chen. DeepFlame: A deep learning
empowered open-source platform for reacting flow simulations (2022). doi:10.48550/arXiv.2210.07094

If you have used the DNN model provided from us, please use the citation:

Tianhan Zhang, Yuxiao Yi, Yifan Xu, Zhi X. Chen, Yaoyu Zhang, Weinan E, Zhi-Qin John Xu. A multi-scale sam-
pling method for accurate and robust deep neural network to predict combustion chemical kinetics. Combust. Flame
245:112319 (2022). doi:10.1016/j.combustflame.2022.112319

35
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CHAPTER

THIRTEEN

LICENSE

The project DeepFlame is licensed under GNU General Public License v3.0

37
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CHAPTER

FOURTEEN

SUBMITTING A PULL REQUEST

We welcome contributions from the open source community. The main approach to communicate with and to make
contribution to DeepFlame is to open a pull request.

1. Fork the DeepFlame repository.

2. Pull your forked repository, and create a new git branchmake to your changes in it:

git checkout -b my-fix-branch

3. Coding your patch

4. After tests passed, commit your changes with a proper message.

5. Push your branch to GitHub:

git push origin my-fix-branch

6. In GitHub, send a pull request with deepmodeling/deepflame-dev as the base repository.

7. After your pull request is merged, you can safely delete your branch and sync the changes from the main (up-
stream) repository:

• Delete the remote branch on GitHub either through the GitHub web UI or your local shell as follows:

git push origin --delete my-fix-branch

• Check out the master branch:

git checkout develop -f

• Delete the local branch:

git branch -D my-fix-branch

• Update your master with the latest upstream version:

git pull --ff upstream develop

39
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